A Fish Two Generation Toxicity Test Detailed Review Paper

Endocrine Disruptor Methods Validation Subcommittee December 2002

Leslie Touart

Detailed Review Paper: A Fish Two Generation Toxicity Test Detailed Review Paper WORK PERFORMED BY:

and

SpringbornSmithers Laboratories LLC

On behalf of the United States Environmental Protection Agency EPA CONTRACT NUMBER 68-W-01-023

METHODS USED IN THIS ANALYSIS

- On-line Literature Search
 - "Dialog" On-Line search with database Biosis Previews Aquatic Science and Fisheries Abstracts
 - Endocrine disruptor screening methods for fathead minnow, zebrafish, medaka, sheepshead minnow
 - Key Words "estrogen* or testosteron* or endocrin* or antiandrogen* or androgen* or hormon* or thyroxin* or * thyroid * method, protocol etc...
 - 7453 records were refined down to 601 records

METHODS USED IN THIS ANALYSIS Cont.

Interviews With The Following Experts

Tom Hutchinson

Reynaldo Patino

Taisen Iguchi

Alf Lundgren

Dan G. Cyr

Nancy Denslow

METHODS USED IN THIS ANALYSIS Cont.

External/Internal Peer Review

- Dr. Dave Hinton Duke Unv. USA
- Dr. John Sumpter Brunell Unv. UK
- · Dr. Gary Thorgaard Univ. of Wash. USA
- EPA Technical Experts

OVERVIEW AND SCIENTIFIC BASIS

- Evidence exists that EDCs affect sexual differentiation, development, and reproduction in fish
- Fish life cycle test methods have been standardized for decades
- Existing methods do not assess transgenerational effects and lack relevant biochemical, morphological, and behavioral endpoints
- The proposed Fish Two Generation Test addresses these EDC relevant omissions

Test Species

- Fathead minnow (Pimephales promelas)
- Medaka (Oryzias latipes)
- Zebrafish (Danio rerio)
- Sheepshead minnow (Cyprinodon variegatus)
 - small size at maturity
 - ease of culture
 - maintenance costs
 - asynchronous spawners

Fathead Minnow Family Cyprinidae

- 35 to 75 mm length
- Extensive aquatic toxicity in USA
- generation time about 4 months
- sexually dimorphic
- females produce 50 to 250 embryos per spawn

Fathead Minnow

Strengths

- Large enough to collect individual blood plasma samples
- Distinct secondary sex characteristics in both sexes
- Large historical regulatory database
- Many laboratories are familiar with culture and testing
- · Spawn on a substrate
- High fertilization rate
- Indigenous to North America

Weaknesses

- · Relatively long life cycle
- Relatively high variability in fecundity
- Relative size of the fish requires more space for culture and testing
- Intersex condition is less frequently observed compared to other fishes.
- Genome poorly characterized

Medaka Family Adrianichthyidae

- indigenous to Japan, Taiwan, and southeastern Asia
- Generation interval of 2 to 3 months
- sexually dimorphic
- 25 mm to 50 mm length
- females produce 10 to 30 eggs per spawn
- estimated to be over 500 cultivated strains
 - Genetically Engineered / Inbred Strains in Toxicity Testing

Medaka

Strengths

- Relatively short life cycle
- Relatively small fish, making culture and testing possible in smaller space
- Female sex determined during embryo stage vs. male sex determined after hatch
- Sex-linked color strain

Weaknesses

- Smaller size reduces individual blood sample volumes compared to fathead minnow
- Less distinctive secondary sex characteristics
- Regulatory data base less extensive compared to fathead minnow.
- Limited use in short-term tests in the U.S.A.

Zebrafish Family Cyprinidae

- Native to East India and Burma
- 4 cm to 5 cm in length
- Extensive aquatic toxicity in Europe
- Difficult to sex zebrafish
- Sexual maturity in 10 to 12 weeks
- 150 to 400 eggs per female
- Development of transgenic zebrafish

Zebrafish

Strengths

- Short life cycle
- Small fish, making culture and testing possible in smaller spaces
- Male fish go through a hermaphroditic phase as juveniles
- Widely used in other medical and genetic research
- Frequently used in Europe for regulatory purposes
- Transgenic fish increasingly available
- Anticipated that entire genome will be sequenced soon.

Weaknesses

- Small size makes individual blood plasma samples not likely
- Minimal secondary sex characteristics
- Limited US regulatory data base
- Limited testing experience in the US

Sheepshead Minnow Family Cyprinodonitidae

- Native to Atlantic and Gulf of Mexico estuaries
- 35 mm to 50 mm length
- Tolerates wide ranges in temperature (0 to 40°C) and salinity (0.1 ppt to 149 ppt)
- Sexually dimorphic
- Sexual maturity in 60 days
- Low variability in fecundity
- Large historical regulatory database

Sheepshead Minnow

Strengths

- Very short life cycle (<60days to sexual maturity), seawater costs may be offset by shorter exposure times for testing
- Males large enough for individual blood plasma samples
- Distinct sexual dimorphism
- Relatively low variability in fecundity
- Relatively large historical regulatory database
- Many laboratories are familiar with culture and testing
- Relatively small fish making culture and testing possible in smaller space

Weaknesses

- Estuarine/marine species, salinity of 15 to 30 ppt recommended, however, lower salinity may be possible (5 ppt)
- Culture requires a large number of females to produce enough eggs in a 24-hr period to initiate a life-cycle test
- Limited information on reproductive endocrinology
- Small size makes individual blood plasma samples not likely

Routes of Administration of Chemical Exposure

Aqueous

- Dietary exposures
- · Direct injection techniques
 - Intravascular
 - intraperitoneal

Measurement Endpoints

- Growth and Morphological Alterations
 - Gonadosomatic Index
 - Histology Techniques
 - Sexual Differentiation
 - Secondary Sex Characteristics
- Measures of Reproductive Performance
 - Fecundity
 - Gamete Viability
 - Changes in Spawning Behavior
- Biochemical Measures
 - Vitellogenin Induction
 - Tissue Steroid Concentrations
 - Thyroid hormones

MEASUREMENT OF BIOCHEMICAL ENDPOINTS

- Sex Steroids in Tissues
 Estrogens/Androgens/Progestins
 - Radioimmunoassay (RIA)
 - Enzyme-linked Immunosorbent Assay (ELISA)
 - Liquid/Gas Chromatography with Mass Selective Detection (LC/GC-MS)

Measurement of Vitellogenin

- Indirect Quantification of Vitellogenin Protein
 - Alkaline-labile Phosphate Assay
- Direct Quantification of Vitellogenin Protein
 - RIA
 - Enzyme-linked Immunosorbent Assay
 - Antibody-capture
 - · Antigen-capture
 - Direct Enzyme-linked Immunosorbent Assay
 - Sandwich Enzyme-linked Immunosorbent Assay
- · Quantifying Vitellogenin mRNA
 - Ribonuclease Protection Assay (RPA)
 - Quantitative Reverse Transcription-Polymerase Chain Reaction (QRT-PCR)
- Mass spectrometry (MS)

CANDIDATE PROTOCOLS

- 1) Partial Life-Cycle Test {Adult (P) to Juvenile (F1)}
- 2) Full Life-Cycle Test {Egg (P) to Juvenile (F1)}
- 3) Multi-Generation Test {Egg (P) to Juvenile (F2)}
- 4) Two Generation Test {Adult (P) to Juvenile (F2)}

Partial Life-Cycle Test {Adult (P) to Juvenile (F1)}

A partial life-cycle toxicity test, which exposes P adult, sexually mature fish and the early life cycle of F1 fish, (can be used to estimate the NOEC)

A pre-exposure reproductive evaluation is conducted on the P fish.

- P pre-exposure, secondary sexual characteristics and fecundity/reproduction (e.g., eggs/female)
- P post-exposure, survival, secondary sexual characteristics, fecundity/reproduction (e.g., eggs/female), GSI, histopathology, and protein and sex steroid biomarkers (e.g., VTG)
- F1 hatching success, survival, growth (length and weight)

Full Life-Cycle Test (Egg (P) to Juvenile (F1))

- A full life cycle test developed (Benoit 1981- fathead minnows) and (Hansen et al. 1978 sheepshead minnow).
- Initiated with fertilized eggs (P) and the fish are continuously exposed through reproductive maturity, followed assessment of the early development of the F1 generation.

- P embryo time-to-hatch, hatching success, larval survival and length, weight of thinned fish, survival, secondary sexual characteristics, fecundity/reproduction (e.g., eggs/female), growth.
- F1 hatching success, survival, growth (length and weight)

Multi-Generation Test {Egg (P) to Juvenile (F2)}

Multi-generation toxicity test, exposes all life-stages of two generations of fish

Test is initiated with eggs and two full generations of fish are exposed during the test (can estimate the NOEC)

- C P and F1 hatching success, survival, growth (length and weight), time-to-maturity, sex ratio, secondary sexual characteristics, fecundity/reproduction (e.g., eggs/female), and protein and sex steroid biomarkers (e.g., VTG).
- F2 hatching success, survival and growth.

Two Generation Test {Adult (P) to Juvenile (F2)}

Two generation life-cycle toxicity test, exposes the adult P, full F1generation, and measures F2 viability

Variables including the time-line of the test, the number of fish required in the test, and obtaining endpoints such as Vtg plasma levels will be associated with the different species.

- P Survival, secondary sex characteristics, reproductive behavior, spawning activity, fecundity, fertilization success
- F1 hatching success, survival, growth (length and weight), time-to-maturity, sex ratio, secondary sexual characteristics, fecundity/reproduction (e.g., eggs/female), and protein and sex steroid biomarkers (e.g., VTG).
- F2 hatching success, survival and growth.

Timeline for Two-Generation Protocol with the Fathead Minnow

Significant Data Gaps

- Male-specific effects of estrogen agonists other than VTG induction.
- The effects of anti-estrogens
- The effects of androgen agonists and antagonists
- Baseline data for thyroid hormone levels in test species.
- The effects of thyroid hormone agonists (or thyroid stimulation) on reproduction.
- Published methods of sexual differentiation for fathead and sheepshead minnows

IMPLEMENTATION CONSIDERATIONS

- Pre-validation studies following the ICCVAM validation process
 - Recommend evaluating the increased sensitivity of a two-generation design over the existing fish full life-cycle standard practice
 - Recommend determining and optimizing specific two generation protocol variables for the candidate species
 - Recommend demonstration of sensitivity, reliability and reproducibility for each species in the recommended protocol
- Validation of the study design through interlaboratory comparisons